Circuit Principles and Weak Pigeonhole Variants

نویسندگان

  • Chris Pollett
  • Norman Danner
چکیده

This paper considers the relational versions of the surjective and multifunction weak pigeonhole principles for PV , Σ1 and Θ b 2-formulas. We show that the relational surjective pigeonhole principle for Θ2 formulas in S 1 2 implies a circuit block-recognition principle which in turn implies the surjective weak pigeonhole principle for Σ1 formulas. We introduce a class of predicates corresponding to poly-log length iterates of polynomial-time computable predicates and show that over R 2 , the multifunction pigeonhole principle for such predicates is equivalent to an “iterative” circuit block-recognition principle. A consequence of this is that if R 3 proves this circuit iteration principle then RSA is vulnerable to quasi-polynomial time attacks. Id: php.tex,v 1.137 2004/08/30 18:29:27 ndanner Exp

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circuit principles and weak pigeonhole variants 1

This paper considers the relational versions of the surjective, partial surjective, and multifunction weak pigeonhole principles for PV , Σ1, Π b 1, and B(Σ b 1)-formulas as well as relativizations of these formulas to higher levels of the bounded arithmetic hierarchy. We show that the partial surjective weak pigeonhole principle for Π1 formulas implies that for each k there is a string of leng...

متن کامل

On Independence of Variants of the Weak Pigeonhole Principle

The principle sPHPb (PV (α)) states that no oracle circuit can compute a surjection of a onto b. We show that sPHP P (a)(PV (α)) is independent of PV1(α)+ sPHP π(a) Π(a)(PV (α)) for various choices of the parameters π, Π, %, P . We also improve the known separation of iWPHP(PV ) from S 2 + sWPHP(PV ) under cryptographic assumptions.

متن کامل

Resolution and the Weak Pigeonhole Principle

We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule.

متن کامل

More on the relative strength of counting principles

We give exponential size lower bounds for bounded-depth Frege proofs of variants of the bijective (‘onto’) version of the pigeonhole principle, even given additional axiom schemas for modular counting principles. As a consequence we show that for bounded-depth Frege systems the general injective version of the pigeonhole principle is exponentially more powerful than its bijective version. Furth...

متن کامل

An Induction Principle and Pigeonhole Principles for K-Finite Sets

We establish a course-of-values induction principle for K-finite sets in intuitionistic type theory. Using this principle, we prove a pigeonhole principle conjectured by Bénabou and Loiseau. We also comment on some variants of this pigeonhole principle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005